If it's not what You are looking for type in the equation solver your own equation and let us solve it.
125=5x^2+35
We move all terms to the left:
125-(5x^2+35)=0
We get rid of parentheses
-5x^2-35+125=0
We add all the numbers together, and all the variables
-5x^2+90=0
a = -5; b = 0; c = +90;
Δ = b2-4ac
Δ = 02-4·(-5)·90
Δ = 1800
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1800}=\sqrt{900*2}=\sqrt{900}*\sqrt{2}=30\sqrt{2}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-30\sqrt{2}}{2*-5}=\frac{0-30\sqrt{2}}{-10} =-\frac{30\sqrt{2}}{-10} =-\frac{3\sqrt{2}}{-1} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+30\sqrt{2}}{2*-5}=\frac{0+30\sqrt{2}}{-10} =\frac{30\sqrt{2}}{-10} =\frac{3\sqrt{2}}{-1} $
| 2(4x+5)=2x+1 | | -8(5x-6)=-272 | | -3(2x-10)=-8 | | 0.3x+7=23 | | (6-5x)-8=-272 | | 36+5x=−3(x+4) | | –19r+1+14r=–7r–17 | | 15/20=x/39 | | √x+8+√x=4 | | 20xx=15x39 | | 3+0.5x=13-0.75x | | x-2.4=-1 | | 5(8s+4)=s+20 | | x-1=1.75 | | 3x+6=7x–10 | | 11(4v+1)=5v+11 | | x-7.1=-8.4 | | 2.5x-3.5=5.25 | | 6b-b=225÷5 | | 3(3y/4+7/4)-2y=4 | | 3•(3y/4+7/4)-2y=4 | | 0.7x=-3.5* | | (3x+1)/(4x-3)=0 | | 32=0.75/x | | x-1/3-x-2/4=1 | | m=6=-4 | | X/72=97/x | | 14=11+w/48 | | x+55=x+125 | | b-1/3=1/2 | | 4^-2x+7=32x^-8 | | 84=11+w |